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Abstract

Small farms and fragmented plots are hallmarks of agriculture in less-developed coun-

tries, and there is evidence of high returns to land consolidation and reallocation.

Complementarities, holdout and asymmetric information mean that private trade will

be slow to reallocate land, and imply that market design has the potential to con-

tribute to the development process. Complexity concerns are, however, paramount.

We present results from a framed field experiment with Kenyan farmers, compar-

ing the performance of several continuous-time land exchanges. Farmers are able to

achieve high degrees of efficiency, and to comprehend and gain from a relatively com-

plicated package exchange.
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Increasing agricultural labor productivity is key to reducing cross country income dif-
ferences. This is because poor countries are relatively less productive in agriculture, and
allocate relatively more workers to it. Recent work supports the conjecture that inefficient
land allocation reduces agricultural productivity in the developing world: labor produc-
tivity increases with farm size, but poor countries have smaller, more fragmented, farms
(Adamopoulos and Restuccia 2014; Ali et al. 2015; Deininger et al. 2016); optimal farm
size has increased with mechanization, yet farms remain smaller than optimal (Foster
and Rosenzweig 2011); and despite important heterogeneity in farmer productivity, there
is almost no correlation between farmer productivity and land holding (Restuccia 2016).1

Improving the allocation of land requires understanding why it does not currently
flow to its most productive use. While a great deal of work has investigated the role
of property rights in allowing trade (for a review see Besley et al. 2010), little work in
economics considers how the market for land should be designed. We argue that efficient
trade requires both secure property rights and a careful design of the market mechanism,
and we take some steps toward understanding the design problem. We take inspiration
from Goeree and Lindsay (2016), who study a house reallocation problem. They propose,
and experimentally verify, that a package market can help overcome an exposure problem
that arises in two-sided settings that involve reallocation.2 We adapt their approach, and
demonstrate similar results in our setting: Kenyan farmers are able to understand and
benefit from a package market despite its apparent complexity.

Formal empirical evidence shows that, even in the presence of secure property rights,
uncoordinated land markets may take decades to reach efficiency. Bleakley and Ferrie
(2014) study land openings on the Georgia Frontier. In the early 19th century, land was
allocated to settlers according to lottery. Allocated plots were of arbitrary sizes that were
unlikely to be optimal in all (or any) locations. Bleakley and Ferrie show that 80 years
later, plot size correlates nearly one-to-one with the initial allocation, and that the corre-
lation does not disappear until 150 years have passed. These results show two things:
first, that the correlation eventually disappears implies that the initial allocation was not

1Some of these results may seem at odds with the known inverse relationship between farm size and
output per hectare (see, e.g., Deininger and Feder (2001)). There are several key differences. First, we are
interested in labor productivity, envisaging a potential move of labor out of agriculture, while much of
the literature is concerned with land productivity, presumably assuming that the population in agriculture
is fixed. Second, the advent of mechanization seems to have removed the inverse plot size productivity
relationship in India, and the existence of mechanization may itself be endogenous to the size of plots.

2As first explored in Goeree and Lindsay (2016), and explained more fully below, the exposure problem
arises if a chain of trades that leads to an efficient outcome includes an negative surplus intermediate trade.
We believe this to be one of several important constraints in our setting. A package market is one in which
a trade can propose a set of trades. For example, a bidder can specify that she is willing to sell a specific
plot if and only if she is able to buy a specific plot.
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optimal; and second, that plot size persists shows that, even in the presence of strong
property rights (the US), uncoordinated land trade is a very slow route to efficiency.

Anecdotal evidence from land consolidation programs also suggests that formal prop-
erty rights are insufficient to allow consolidation. Throughout Europe, agriculture was,
at some point, characterised by severe fragmentation.3 At least since the 18th century,
this fragmentation has been mitigated via government programs.4 The Danish program
is of particular interest. A group from the land office would work with a village for about
4 years to generate a plan for the reallocation of land.5 After this, contracts of sale were
drawn up and executed simultaneously and voluntarily. Figure 1 shows the change in
land structure in one village. The change is striking in light of two observations: first,
Denmark’s institutions allowed free trade of land in the absence of the program; second,
trade in the program was voluntary; hence every land owner weakly preferred the new
allocation. These two facts imply that farmers wanted to defragment their land, but were
unable to do so without a coordinating mechanism.

Theory also implies that uncoordinated land consolidation is difficult. First, given in-
creasing returns at the plot level, uncoordinated land markets are likely to be thin because
the most advantageous trades will be those that create contiguous plots, and so efficient
trade is concentrated among neighbours. This thinness is predicted to impede trade in
the presence of two-sided private information. Second, farmers who are proactive in de-
fragmenting land may be subject to exposure risk. Suppose that it is optimal to hold two
contiguous plots, and a farmer starts with two fragmented plots. Defragmentation re-
quires two simple trades. If the first trade must take place at a loss and the second trade
cannot be guaranteed to take place, perhaps because of holdout, then trading is risky and
may not occur.6 Finally, the efficient set of trades is likely to be complex. Efficient trades
often involve multiple parties in a chain, and there are many possible trades and trading
mechanisms that could be used.7

Theoretically, a centralized market design can mitigate these problems in a timely and

3Land is fragmented if farmers own multiple small noncontiguous plots.
4For a review see http://www.fao.org/docrep/006/Y4954E/Y4954E00.HTM
5See Hartvigsen (2014) for a review of the institutions used in Denmark.
6Goeree and Lindsay (2016) is the first paper that we are aware of to point out this form of exposure in

two-side reallocation problems. Exposure also arises in one-sided settings where objects are complements.
See, for example, Rassenti et al. (1982), Brunner et al. (2010), Goeree and Holt (2010), and Chernomaz and
Levin (2012) for package designs aimed at mitigating exposure in one-sided settings.

7An additional issue arises if there is asymmetric information about the quality of land. While we do
not directly address this problem, we believe that it can be partially mitigated by initially exchanging leases
(potentially with an option to buy) so that purchasing farmers have the ability to learn about land quality.
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apolitical manner.8 In particular, a package exchange with XOR bidding9 that allows for
sufficiently complex packages: (i) increases market thickness by allowing farmers to bid
on multiple consolidated farms independent of their initial allocation; (ii) removes the ex-
posure problem by allowing all trades to take place at once; and (iii) reduces complexity,
because both chains and trading rules are defined by the auction environment.10 Pack-
ages may also relieve credit constrains as buying can be made conditional on selling.

A guiding principal of market design is that mechanisms work best when they are
tailored to the needs of participants. A first step in designing a mechanism for rural land
trade is to understand whether the target population – small holder farmers with little
formal eduction – is able to trade efficiently using potentially complex market mecha-
nisms.11 Toward this aim, we designed a simple land trading environment, and imple-
mented a framed field experiment in rural Kenya.

The environment has several features that mirror important aspects of the land trading
problem. First, there are increasing returns at the plot level, so defragmenting land is
efficient. Second, both farmers and land are heterogeneous in their productivity, and a
complementarity means that efficiency is reached when high productivity farmers farm
more productive land. We are thus able to study the ability of different market designs
to achieve two goals: efficient land defragmentation; and efficient sorting of land. Third,
there is a potential for exposure risk in our environment.

We implemented three different market mechanisms that are based on the package
market design of Goeree and Lindsay (2016).12 We based our mechanisms on a pre-
existing format for two reasons. First, the land defragmentation problem we study and
the house reallocation problem that they study share the similarity that many participants

8We see the historical land consolidation programs as akin to the comparative hearings discussed in the
market design literature on spectrum auctions (Milgrom 2004). Even if these institutions allocate goods
efficiently (which is debatable), they are costly, time consuming and open to political intrigue.

9XOR denotes “exclusive or,” i.e. participants can submit multiple bids simultaneously, at most one of
which will be accepted.

10While there has been considerable recent work on package auctions, package exchanges have attracted
much less attention. Combinatorial exchanges have been explored in the context of airport take-off and
landing slots (Rassenti et al. 1982; Grether et al. 1989; Balakrishnan 2007), native vegetation offset permits
(Nemes et al. 2008), pollution permits (Fine et al. 2017), housing (Goeree and Lindsay 2016) and the reallo-
cation of spectrum (Milgrom and Segal 2017; Milgrom (2017)). For a review of the literature see Milgrom
(2007) and Loertscher et al. (2015).

11Field evidence on the extent to which individuals in developing countries are able to trade efficiently in
markets is mixed. See Bulte et al. (2013), Fiala (2015) and Haushofer and Zurlinden (2013) for experimental
studies related to market efficiency in a developing country context.

12The algorithm we use is near identical to the one in Goeree and Lindsay (2016) except that we impose
XOR bidding whereas they use endogenous cash and holding constraints. Our stricter set of constraints
is due to the complementarity that exists across plots of land; it ensures that a bidder doesn’t defragment
land with one winning bid and then break up their land holdings with another. Our designs also differ in
that we allow communication in all treatments and use a different visualization scheme.
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are likely to want to move locations rather than increase or decrease holdings. Given that
their mechanism can eliminate the exposure problem inherent in reallocation and was
experimentally validated, it was a natural mechanism to explore. Second, we are inter-
ested in the issue of complexity and its interaction with our target population who may
have low numeracy and literacy skills. By using a parallel treatment structure, their ex-
periment gives us a natural benchmark for the complexity tradeoff in a more traditional
subject pool.

In our first treatment, farmers were able to trade single plots of land in a continuous
double auction, with a broker who facilitated communication (CDA-Broker). Commu-
nication was allowed because exchange in Kenya is often done through direct bilateral
bargaining and we are interested in market designs that can act alongside existing insti-
tutions. Our second treatment was identical to the first, except that farmers could also
specify swaps – that is they could offer to buy (or sell) one plot conditional on selling (or
buying) another plot (CDA-Swap). We allow cash to be offered or demanded as part of the
swap. Our final treatment (CDA-Package) was the same as CDA-Swap, except that farmers
could also make package offers, with a maximum of two buys and two sells. That is, they
could offer to buy two plots, offer to sell two plots, and offer to sell (or buy) up to two
plots conditional on buying (or selling) up to two plots.13

We show several results. First, efficiency is high. Farmers were able to extract more
than 70% of the available efficiency gains across all treatments, and there are very few
instances of losses. We believe this is an important result, it demonstrates that our target
sample are able to understand the market and to trade.

Second, as conjectured, the more complicated CDA-Package mechanism achieves higher
efficiency, extracting 8 percentage points more surplus than CDA-Broker. This shows that
our subjects are able to make use of a market design that one may conjecture is too com-
plex. Across treatments, farmers extract most of the gains from defragmentation, but less
of the gains from sorting. CDA-Package does better overall because it improves sorting.

Third, we find that farmers are able to mitigate exposure risk. Within a session, half
the auctions featured tight credit constraints, and half lax credit constraints. Credit con-
straints heighten the exposure problem by preventing subjects from receiving the full
value of land sold early in a chain, and we conjectured this would reduce efficiency. We
find no statistical evidence that credit constraints reduced efficiency.

13In our context, larger packages (for example sell 3 and buy 3) have no theoretical value, because it
is always optimal for each farmer to own exactly two plots. We chose to constrain our package market
following the principal that designs should be “as simple as possible, but not simpler.” This aphorism is
often attributed to Albert Einstein and is highlighted as a feature of good design by Bichler and Goeree
(2017).
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Fourth, we show that farmers earnings are strongly correlated with their Shapley
value. We see this as evidence that trading did not increase inequality, a key concern
in our setting. From a theoretical perspective, exposure may lead to an asymmetric divi-
sion of surplus, even if it does not create inefficiency.14 To evaluate whether this occurs
in our data we require a prediction for how surplus would be divided if bargaining was
efficient and egalitarian; the Shapley value provides such a benchmark. We find a re-
markably strong correlation between Shapley value and the ex-post division of surplus,
regardless of treatment. This tight connection between behavior and the leading coopera-
tive solution suggests that informal institutions may be important in our setting, and that
interventions that can be overlaid atop these institutions may be particularly successful.15

Taken together, these results suggest that formal market institutions can play an im-
portant role in improving land allocation, and that complex designs such as package ex-
changes can be used effectively in a development context. Our results also highlight the
potential complementarity between formal mechanisms and current practices.

1 Experimental Design

1.1 Overview

We conducted 48 experimental sessions, each consisting of 6 farmers who played 8 auc-
tions. Farmers were recruited by taking a census of two villages in Kiambu County,
Kenya, and inviting individuals who identified as farmers, owned land, and were be-
tween 18 and 55 years of age. Approximately 70 per cent of invitees attended. Two initial
pilots showed that females were more likely to attend, so males were oversampled, with
a target invitation rate of 60% males.

At the beginning of each session, farmers were randomly assigned a computer and
an enumerator, and read instructions in their preferred language (English, Swahili, or
Gikuyu). The enumerator remained with his or her assigned farmer for the duration of
the experiment, and also acted as a bid assistant.16 After reading the instructions, the

14This is seen in Collins and Isaac (2012), who use a laboratory experiment to study a land assembly
problem. Across their treatments surplus division is asymmetric: buyers receive only a small portion of the
final surplus when trade is successful.

15A caveat is that the stakes in our experiment are much smaller than the value of land. If bargaining
outcomes are supported by repeated game considerations, the temptation to deviate is likely to be much
greater in real land auctions, and informal institutions may break down.

16Bid assistants are a common feature of real-life combinatorial auctions when the target population may
have difficulty with the interface, and have been used, for instance, in the auction of slot machines and
taxi medallions in Australia. To reduce the influence that an individual bid assistant might have on the
experiment, we recruited extra bid assistants (16 total) and randomized bid assistants across treatments.
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bid assistant’s role was to answer any questions about the trading rules, calculate the
surplus from any trade upon request, and input bids into the system. Enumerators also
recorded earnings in each auction, and whether subjects communicated.17 Enumerators
were given three days training on the mechanics of the game prior to the first session.
We were clear with the enumerators that they were not to suggest particular trades to
farmers, and enumerators did not financially benefit from farmer performance.

After the instructions, farmers participated in one 15 minute practice auction in which
they were encouraged to make bids using the mechanism assigned to their session. In
the sessions that allowed for packages, enumerators encouraged their farmers to use all
possible package structures and to make multiple bids.

Farmers then participated in 8 auctions, each lasting 10 minutes. As discussed in the
interface section, subjects could see their current allocation and bids on their screen, and
a centralized screen showed the plots for which there were active bids. An additional
enumerator was available in each session to act as a “broker.” The broker would take oral
messages between farmers, but was explicitly told not to actively organize trades.18

Farmers had a 30 minute break after the fourth auction, and were fed a light snack.
At the end of the experiment, farmers were paid for all 8 auctions via mobile payment.
The exchange rate was 20 points to 1 shilling. An experiment lasted about 3.5 hours,
and farmers received 483.3 shillings on average. This was roughly 1.5 days wage for the
represented population.

1.2 Auction Environment

1.2.1 Production Functions

Our environment was designed to study two issues: de-fragmentation; and farmer sort-
ing. Fragmentation occurs if plots are not contiguous, and is conjectured to reduce effi-
ciency. An effective market design should be able to de-fragment an allocation, and allow
land to flow to the most productive farmer, leading to efficient sorting.

In each session, 6 farmers traded 12 plots of land located on a simplified map. The map
is presented in Figure 2. Each farmer was initially allocated two plots. There were two
dimensions of heterogeneity. First, there were three land types: blue land was the most
productive, red the second most and green the least. Second, there were three farmer
types: high productivity, medium productivity and low productivity. In all sessions there

17In practice there was communication for all subjects in all sessions.
18We allow for oral communication in this experiment since we are interested in developing exchanges

that can be used in conjunction with current institutions. Given that communication is a feature in our
target environment we consider it an important part of our design.
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were two of each type of farmer. Panel A of Figure 3, shows total profit for each farmer
and land combination. A high productivity farmer always earned twice as much as a low
productivity farmer, and a medium productivity farmer earned one and a half times as
much. Red land was twice as productive as green land, and blue land was one and a half
times as productive. This setup creates a complementarity. For example, the gain from
moving from green to blue land was 200 for a high type, but only 100 for a low type.
Hence, efficiency required the high type farmers to farm the blue land, the medium type
farmers to farm the red land, and the low type farmers to farm the green land.

There was also a bonus for operating adjacent plots, and a cost from operating too
many plots. A farmer who operated two adjacent plots of the same colour received a
20% bonus, as shown in Panel B of Figure 3. A farmer who operated more than two
plots, earned only the profits of the two most profitable. The adjacency bonus allows
for an increase in productivity from de-fragmentation. The complementarity allows us
to study sorting. The fact that a third plot is not productive allows us to introduce a
complementarity, but avoid a situation in which efficiency requires all land to be held by
the most productive farmer. It also allows us to introduce exposure risk with a simple to
explain production function. We explained the two-plot restriction as a span of control
constraint, a farmer simply does not have enough time to tend to more than two plots.

The maps and production functions remained constant across all auctions. All players
knew their own production function and that there were three types of farmers. However,
details of the other two production functions, and the assignment of types to subjects, was
not revealed. Subjects knew which plots were owned by which subjects.

1.2.2 The Initial Allocation of Land

We conjectured that the the initial allocation of plots would affect the ease of achieving
defragmentation and efficient sorting. To study this issue, we created eight different ini-
tial land allocations, which are shown in Figure 4. In each map, players 1 & 2 are high
types, players 3 & 4 are medium types and players 5 & 6 are low types. The maps are
symmetric within player type. That is, players 1 & 2 are interchangeable, players 3 & 4
are interchangeable, and players 5 & 6 are interchangeable.

The allocations are ordered according to our pre-experimental assessment of how dif-
ficult it would be to reach full efficiency. We considered four dimensions of difficulty.
First, for each player, we determined how many CDA-Broker trades were necessary to get
to their efficient allocation.19 Second, we considered how many farmers would need to be

19 Note that if an allocation required two CDA-Broker trades, it required only one CDA-Swap trade. If an
allocation requires four CDA-Broker trades, it requires two CDA-Swap trades or one CDA-Package trade.
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involved in any efficient CDA-Swap trade. Third, we considered whether money was re-
quired to reach an efficient outcome. Finally, we considered strategic issues, for example
the extent to which one farmer could holdup another farmer.

Map 1 was thought to be the simplest. For each player, reaching efficiency requires
only one CDA-Swap, and only two participants are involved in each trade. No money is
required, because all efficient trades increase all participants’ surpluses equally. Map 2
is similar to Map 1, but money is required because efficient trade reduced land value for
some farmers. For example, players 1 and 3 must swap land, but this will reduce farmer
3’s output and so she must be compensated. Map 3 is similar to Map 1, and in principle
requires no money. However, players 2, 4 and 6 might have a strategic motive to holdout
and exploit the weak bargaining positions of players 1, 3, and 5. Map 4 can be solved
with only one CDA-Swap per player, but those trades require a chain of 3 participants.
Money is required, but there is no strategic issue. Map 5 was thought to be more complex
than Map 4, and requires two CDA-Swap trades or one CDA-Package trade by each player
to reach the efficient allocation. Each of those trades involves only two players, money
is required and there does not appear to be a strategic issue. Map 6 again requires two
CDA-Swap trades, but in this case, some of those trades require a 3 person chain. Again,
money is required and their does is not obvious strategic issue. Map 7 is similar to Map
6 but appears to have a holdout problem; player 6, for example, may not wish to sell.
Finally, we judged map 8 to be the most difficult. It requires two CDA-Swap trades per
player and some of those trades require a chain of 4 players.

It should be noted that in coming to our ex-ante assessment of difficulty we tried to
determine how hard it would be to reach full efficiency. We did not consider whether
initial allocations differed in the ease with which partial efficiency could be achieved. We
return to this point in Section 2.4.

In ranking initial allocations, our goal was to generated a variety of maps and allow
empirical evaluation the conjecture that initial allocation matters. We show below that
initial allocations do matter, and believe that there may be interesting work to do in for-
malizing the intuitions presented in this section.

1.2.3 Trading Mechanisms

We consider three trading mechanisms based on the continuous double auction and the
package market of Goeree and Lindsay (2016): a simple CDA-Broker mechanism where
farmers can communicate via the broker but can place only buy or sell orders to the mar-
ket, a CDA-Swap mechanism where subjects can place buy orders, sell orders, or package
orders consisting of one sale and one purchase, and a CDA-Package mechanism where
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subjects can place buy orders of up to two units, sell orders of up to two units, and pack-
age orders consisting of up to two buy orders and up to two sell orders. Communication
through the broker is available in all three mechanisms.

Winner determination and surplus division are as outlined in Goeree and Lindsay
(2016) with some modifications to impose XOR bidding. Let the set of farmers, F, be
indexed by i ∈ {1, . . . , 6} and the set of plots, L, be indexed by l ∈ {1, . . . , 12}. Farm-
ers submit orders o = (m, x) consisting of the minimum amount of money they must
receive, m, and a vector of demanded plots, x ∈ {−1, 0, 1}12. A negative number indi-
cates that a farmer is offering money or trying to sell a plot, while a positive number
indicates that a farmer must receive money, or wants to buy a plot. For instance, an order
(−500, 〈1, 0, ..., 0〉) indicates that a farmer is willing to pay up to 500 points to acquire plot
1, while an order (0, 〈1,−1, 0, ..., 0〉) implies that the farmer is willing to buy plot 1 and
sell plot 2, as long as he pays no money.

Orders placed by a farmer must be legal. Denote the plots owned by farmer i at time
t as ωt

i ∈ {0, 1}12 and denote the cash of farmer i at time t as ct
i . A bid (m, x) is legal if

at the time of placing the order, ct
i + m ≥ 0 and ωt

i + x contains only zeros and ones. A
bid is thus legal if the farmer has more cash than the amount of money he offers, he sells
only land that he owns, and he buys only land that he does not own. Orders placed by a
farmer are also restricted by the mechanism used in each treatment, as outlined above.

Legal orders are sent to the order book in the order that they arrive, and transactions
occur any time there exists a set of legal orders where: (i) supply equals or exceeds de-
mand for all plots; (ii) only a single order is used for each farmer; and (iii) the total amount
of money offered is not positive. Formally, let Ot denote the legal orders in the order book
at time t, and index its elements oj = (mj, xj), by j = {1, . . . , |Ot|}. Let d = {0, 1}|Ot| be
a vector of orders from the order book, where dj = 1 if an order j is winning and dj = 0
otherwise. Let Ot

i be the active orders of farmer i and let Wi = {oj ∈ Ot
i |dj = 1} be the

orders of farmer i that are winning. At each time t we find:

V∗ ≡ max
d

∑
j
−mjdj

subject to

∑
j

xl
jdj ≤ 0 ∀l ∈ L, and

|Wi| ≤ 1 ∀i ∈ F.
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Trade is triggered if V∗ ≥ 0.20

When a transaction is triggered, we return plots that were not demanded to their orig-
inal owners, and transfer all other plots according to the set of winning orders. If there
is a positive surplus (i.e., V∗ > 0), we divide the remaining surplus amongst the win-
ning farmers as follows: let W = {oj ∈ Ot|dj = 1} be the set of winning orders and
Ŵ = {oj ∈ Ot|oj ∈ Ot

i , |Wi| = 1} be the set of all orders made by the winning farm-
ers. Likewise, denote the set of orders made by non-winners by NW = Ot \ Ŵ. Let
p ∈ {0, . . . , 10000}12 be a vector of (integer) prices, and denote the surplus generated by
order j at prices p as sj(p) = −mj − p · xj.21 As is standard in these problems, we find
the set of prices that lexicographically maximizes the minimum surplus of winning farm-
ers, subject to the revealed preference constraints of the losing orders.22 The revealed
preference constraints ensure that a losing farmer would not prefer to have won once the
surplus is reallocated given the information that was submitted to the market. Finding
these prices is equivalent to solving:

min
p ∑

j
dj

(
sj(p)− V∗

|W|

)2

subject to:

sj(p) ≥ 0 ∀oj ∈W,

sj(p) ≤ 0 ∀oj ∈NW, and

∑
j

djsj(p) = V∗.

Each winner pays or receives p · xj and losing farmers pay and receive nothing. In the
case of ties, we use the first solution found by the solver.23

20Note that the restriction to legal trades ensures that there is no short selling, and that all budget con-
straints are met. We handle these on the client side to minimize the computation time required to solve
the winner allocation problem, and to make farmers aware of attempted bids that could not be exercised.
Relative to Goeree and Lindsay (2016), the additional cardinality constraint prevents more than one order
from a farmer being used in each transaction. This constraint ensures that orders submitted by each farmer
are considered XOR. Further, we only use the bids of non-winners to set prices, while Goeree and Lindsay
(2016) use all non-winning bids. This change avoids a situation that can arise in our setting, where bidders
impose revealed preference constraints on themselves, and reduce their own surplus.

21We use integer prices in the experiment in the range of 1 and 10000 so that trade prices are similar to
ones that farmers are likely to encounter when trading in Kenya Shillings on a day-to-day basis.

22See Kwasnica et al. (2005) for a broader discussion of revealed preference constraints.
23The underlying algorithms were written in Minizinc, a free open-source constraint modelling language,

and solved using GECODE (Nethercote et al. 2007; Stuckey et al. 2014). In general, the winner determina-
tion problem could be solved in under 200 milliseconds for order books containing under 100 legal orders.
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As can be seen in the optimization rule above, lexicographically maximizing the min-
imum surplus is equivalent to minimizing the squared difference between the surplus of
each winner and the equal split subject to an additional constraint that all surplus is allo-
cated. We explain our surplus division rule using this logic. Farmers are told that we try
to split the surplus as evenly as possible between the farmers but that we want to make
sure that farmers who do not trade are not disadvantaged. In training our enumerators
we gave two main examples — one where there is a single buy order and a single sell
order and where the surplus is divided equally, and one where there are two buy orders
and a single sell order and where the non-winning buy order pins down prices.

After a transaction is triggered, all non-winning orders made by farmers in the win-
ning coalition become inactive, and we allow farmers to renew any legal orders if they
wish. Orders that are made illegal (for instance, orders that contain sale offers of ob-
jects no longer owned) are hidden from a farmer’s offer book, but can be renewed if later
transactions make them legal. Farmers have the ability to withdraw legal orders at any
time.

1.2.4 Interfaces

All bids were entered through a computer interface. The interface displayed the farmer’s
valuations and current allocation on a geospatial map as in Panel (a) of Figure 2, and
provided a calculator that could be used to determine the value of different allocations.
Players (or their bidding assistant) could click on sets of plots on the map (depending on
the treatment) and enter a willingness to pay, or willingness to accept to make the trade.
Only legal bids were accepted by the computer. The interface also showed a list of all
current bids placed by the farmer. In addition to the individual interfaces, a projector
showed a map which indicated who owned each plot of land and when a plot of land
was offered for sale, or had an offer to purchase. Combinatorial bids showed up on the
projected interface as separate components. A screenshot of the individual and projected
interfaces is shown in Figure 5.

The surplus division rule was slightly slower, but usually completed in under 600 milliseconds. To en-
sure that the system was able to continue in real time, we built timeouts into the surplus division rule that
would end the solver and consume all the surplus if no solution was found in 10 seconds. This circum-
vented problems that occur if prices aren’t fully pinned down by orders. In practice, the timeouts were
never triggered.
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1.2.5 Cash Constraints and Exposure Risk

Exposure risk exists if reaching an efficient allocation requires at least one farmer to make
a loss on an intermediate trade. This may discourage all trade if future transactions that
compensate for the loss cannot be committed to. In practice, subsequent trades may not
occur, either because of strategic holdup, or because of changes of circumstance.

To see that intermediate trades may lead to losses, consider a situation with initial
allocation

3 4

3 1 1 4

blue lots

red lots,

and the efficient allocation

1 1

3 3 4 4

blue lots

red lots.

Initially the land values are 720, 525 and 525 for 1, 3 and 4 respectively; after trade they
are 960, 540 and 540. Thus, there exists a sequence of trades that is mutually beneficial.
Getting to efficiency, however, requires intermediate trades that create losses. If 1 first
buys from 3, he holds three plots and cannot farm them all. After this intermediate trade
his landholding is still worth 720, while farmer 3’s value has decreased to 225. Since the
surplus from this trade is negative (-300), someone must make a loss. Alternatively, if 1
first sells to 3, 1’s land value decreases to 300 while 3’s increases to 540. The net gain is
negative (-285), and again someone must make a loss.

There are three reasons why simple trades (i.e. a sale and purchase of one plot) may
have negative surplus in our setting. First, as in the example, a purchased plot may not
be farmed, because the buyer now has three plots. In this case output is lost until the
buyer sells a plot. Second, the buyer may produce less from the purchased plot than the
seller, because of type productivity differences. This would occur, for example, when a
high type farmer owns low type land. Efficiency requires that this land be sold to a low
type farmer, and that the high type farmer later acquire high type land. But, the initial
sale reduces total output. Third, the trade might break up a previously consolidated set of
plots. This would occur, for example, if a high type farmer owned two adjacent medium
type plots. Efficiency requires that the high type farmer sell these plots and acquire high
type plots. Any simple trade would require first that the adjacency bonus be lost.

We introduced an additional experimental feature, cash constraints, to increase the
likelihood that trade creates exposure risk. In half of all auctions, farmers started with
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cash of 750. This is enough money to induce any farmer to sell any single plot. In partic-
ular, it would be sufficient to compensate a high productivity farmer with two adjacent
high quality plots for selling one.24 In the other half, the cash endowment was 250. This
is not enough to compensate all farmers for all efficiency increasing simple trades. For ex-
ample, efficiency requires a medium type farmer who owns two consolidated high quality
plots to sell to a high type farmer. This trade reduces the medium types output by 460.
With only 250 in cash, the high type farmer cannot fully compensate the medium type
farmer for this loss in output.

1.2.6 Treatment Randomization

We played 48 sessions in total. Each session consisted of 8 auctions, and was assigned
to one trading mechanism: CDA-Broker, CDA-Swap, or CDA-Package. In each session,
the first four auctions had the same cash treatment and, the second four the alternative
cash treatment. Hence, each session could be assigned to one of six possible treatments:
{BrokerLH, BrokerHL, SwapLH, SwapHL, PackageLH, PackageHL} where BrokerLH de-
notes a CDA-Broker treatment that plays low cash for the first four auctions and then high
cash for the last four. These treatments were block randomized. The set of 48 sessions was
divided into 8 blocks, each consisting of 6 consecutive sessions. Each of the 6 treatments
was then randomly assigned to one of the sessions within each block.

Each lab session required one lead enumerator to introduce the environment and im-
plement the computer programs, 6 bidding assistants, and one broker. Two labs (labeled
red and black) ran in parallel, each playing one session in the morning and one in the
afternoon. Lead enumerators were assigned to a specific lab (red or black) and stayed in
that lab throughout. Bidding assistants were randomly assigned to a specific farmer and
lab (e.g. farmer 4 red) on a session by session basis. Brokers were also randomly assigned
on a session by session basis.

Because subjects arrived slowly over time (it was hard to get farmers to all arrive at
9am), the first session of the day alternated between the red and black lab. The first 6
farmers to arrive were randomly assigned to a player number between 1 and 6, and then
played in the lab that was operating the first session. The next six farmers to arrive were
similarly assigned a player number, and played in the second lab. Each farmer played
four auctions as their initial player number, and was then moved to a different player
number. This was done such that every subject had an equal chance of being assigned to
play one of the six possible sequences {HM; HL; MH; ML; LH; LM}.

24The land value before a sale is 960. after a sale his land value would be 400. Thus, the difference is 560.
If this farmer were offered 750 to make this trade she would be willing.
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Finally, the 8 maps displayed in Figure 4 were assigned to sessions. Every session
played every map, and they were played in one of 8 orders. These orders were devised
to minimize ordering effects: we wanted to have difficulty approximately even across the
session to minimize the impact of learning. To assign orders to sessions, we first randomly
permuted the 8 map orders as shown in Figure 6. We then assigned map orders 1 to 6 to
the sessions in block 1 (in order), orders 2 to 7 to block 2 (in order), etc.

Overall, this method gives assignment to the main auction and cash treatments that
are orthogonal to the other elements of the design, as well as maps that are assigned
orthogonally to the treatments and also randomly across time and session. We also have
balance across all main elements of the experimental design.

2 Results

2.1 Data Overview and Summary Statistics

Table 1 provides summary statistics for our sample. Despite oversampling men, we
had nearly 60% female participants, likely reflecting greater availability during daytime
hours. Recall that each of these participants indicated that they own land, and are re-
sponsible for farming decisions on that land. Average age was 43 years, and the average
attendee had about 12 years of school, indicating that our sample was slightly better ed-
ucated than anticipated. Most farmers owned very little land (just less than 1 acre), and
one plot on average. This low ownership of plots likely reflects the fact that many women
own a small fraction of the family land. Very few of the farmers had ever traded land.

As discussed in the design section, we provided enumerators with 3 days of training
prior to the start of the experiment; where they learned how to use the interface, how to
calculate payoffs, how to place bids, and how prices were set. In the training sessions,
enumerators also practiced giving instructions to each other. Despite this training, our
lead enumerators raised concerns that the other enumerators did not fully understand
the rules of the more complicated package exchanges. These concerns diminished as the
experiment progressed. As the enumerators were responsible for translating the instruc-
tions and teaching farmers, it is likely that farmers did not fully understand the mecha-
nisms in the early sessions. Looking at the data, the first two sessions in each treatment
accounted for 43% of auctions where efficiency was in the bottom decile, and accounted
for 63% of auctions where efficiency was negative. Figures 7a and 7b show the evolu-
tion of efficiency overtime, broken down by treatment.25 Figure 7a shows that there is

25Efficiency is formally defined below.
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a marked improvement in efficiency over time for all treatments, but that this is much
stronger for the more complicated package treatments. This makes sense if enumerators
found those treatments difficult to explain. Figure 7b is the same as Figure 7a but a linear
fit is added to the data after block one. This figure shows that, after removing block one,
learning is even across the three treatments.

Given these observations we display all our results in three ways. First, we use all the
data and no time trends. Second, we present results that exclude the first block. Third,
in our preferred specification, we also include a linear time trend. In all specifications we
include block (strata) fixed effects, as well as controls for the gender composition of the
session, and the identify of the lab (red or black). Unless otherwise stated, we analyze
the data at the auction level, with errors clustered at the session level. Summary figures
quoted in-text are from our preferred specification.

We lost one session due to the accidental reformatting of the server computers.26 We
also drop one session where the wrong mechanism was used, and two auctions where
the wrong configuration was used. In total our data consists of 46 sessions, 366 auctions,
276 farmers, and 2196 farmer-auction observations.

2.2 Efficiency

We begin our analysis by studying how much of the gains from trade was captured by
farmers. In each auction, we calculate:

Efficiency =
∑n

i=1

(
s f inal

i − sinitial
i

)
∑n

i=1

(
soptimal

i − sinitial
i

) , (1)

where s f inal
i is final surplus generated by farmer i, sinitial

i is farmer i’s initial surplus, and
soptimal

i is the surplus farmer i would generated at the optimum. Efficiencies are bounded
above by 1, and are the proportion of possible gains realized in a given auction.

Result 1 Average efficiency is 70 percent or higher. The CDA-Package mechanism achieves 8
percentage points more efficiency than the CDA-Broker mechanism.

Support for Result 1 is given in Figure 8a and Table 2. Figure 8a shows average effi-
ciency and 95% confidence intervals, for each of the three market mechanisms. As can be

26Our experiments took place in a village where there was no internet access and we used two laptops
as servers. Following the last session, these laptops were confused by staff with the computers we used
as clients and the hard drives were formatted in order to reuse the machines for other projects. The last
session run was not backed up.
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seen, average efficiency is high under all three mechanisms, with an average efficiency
rate 70% or higher in all treatments.

The CDA-Broker mechanism has the lowest average efficiency of 70%. This efficiency is
high relative to the work of Goeree and Lindsay (2016) who document poor performance
of a CDA in a house auction with exposure risk. As indicated in the introduction, a major
difference in our designs is that we allow for communication through a broker, potentially
allowing farmers to mitigate exposure risk through informal agreements.27

To see how communication influenced trade, we look at the transaction level data. In
our pilots, deals negotiated through the broker typically led to simultaneous buy and sell
bids at the arranged price. Such bids register in the system as having no surplus to divide
(i.e., V∗ = 0). We use the proportion of trades with zero surplus as a measure of brokered
transactions.

Figure 8b shows that a very high proportion of trades are brokered, and that the pro-
portion of brokered transactions declines as the available package size grows. 37% of
transactions in the CDA-Broker treatment are brokered, while brokered transactions ac-
count for 20% of transactions in the CDA-Swap mechanism, and just 16% of transactions
in the CDA-Package auctions. All these differences are significant in an OLS regression
with errors clustered at the session level (p-value < .01 for all comparisons). Our data
thus suggests partial substitution between communication and formal package mecha-
nisms.

Table 2 reports coefficients from an OLS regression with efficiency on the left hand
side, and the mechanisms on the right. CDA-Broker is the left out. Our preferred speci-
fication is (5), which controls for block fixed effects and time trends, and leaves out the
first block, as discussed above. In this specification, the CDA-Package mechanism has
significantly higher efficiency than the CDA-Broker mechanism. From a base of 70% effi-
ciency, the CDA-Package mechanism increases efficiency by 8 percentage points, or 11%.
Efficiency is 4 percentage points (6%) higher in CDA-Swap than CDA-Broker, but the dif-
ference is not significant.

As discussed above, we also changed the amount of cash that farmers started with.
This was designed to alter the degree of exposure risk. Regardless of the specification,
the low-cash treatment does not statistically significantly alter efficiency, and this lack of
impact does not depend on the treatment. This results suggest that farmers were able to
deal effectively with the greater exposure risk that comes from a tighter cash constraint,
although it should be noted that we have low power to detect interaction effects.

27We also had a different value structure and use a shared graphical visualization of open trades.
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2.3 Fragmentation and Sorting

We next ask how the different treatments performed at the two separate tasks of defrag-
mentation and sorting. For a given allocation of land, let yi denote the value associated
with farmer i’s two best plots (ignoring consolidation bonuses), and let ci ∈ {0, 1} in-
dicate whether these plots are fragmented (ci = 0) or consolidated (ci = 1). Based on
the production function used in the experiment, it follows that the total profit on farmer
i’s land is si := (1 + 0.2ci)yi. After some algebra, the change in surplus from a farmer’s
initial allocation to their final allocation can be rewritten as:

s f inal
i − sinitial

i = 0.2
[
c f inal

i − cinitial
i

]
yinitial

i︸ ︷︷ ︸
Defragmentation

+
(

1 + 0.2c f inal
i

) [
y f inal

i − yinitial
i

]
︸ ︷︷ ︸

Sorting

.

We interpret the first term as the change in surplus due to defragmentation and the second
term as the change in surplus due to sorting.28 Aggregating over the six farmers, and
normalizing by the maximum change in social surplus, we calculate a defragmentation
and sorting measure for each auction:

Defragmentationabs =
∑n

i=1 0.2
[
c f inal

i − cinitial
i

]
yinitial

i

∑n
i=1

[
soptimal

i − sinitial
i

]
Sortingabs =

∑n
i=1

(
1 + 0.2c f inal

i

) [
y f inal

i − yinitial
i

]
∑n

i=1

[
soptimal

i − sinitial
i

] .

Note that, by construction, Efficiency = Defragmentationabs + Sortingabs.
Figure 9 shows these measures, first for a hypothetical case where full efficiency oc-

curs in each auction, and then for each of the three treatments. Looking first at the full
efficiency case, note that defragmentation accounts for 73 percent of the available gains,
while sorting accounts for only 27 percent. The lower potential gain from sorting is due
to our selection of initial allocations: two of our easiest maps (Map 1 and Map 3) had no
gains from sorting, while two of the remaining maps (Map 2 and Map 4) had only small
gains. The figure shows that farmers were able to capture most of the available gains from

28Due to the multiplicative nature of the adjacency bonus, a farmer who both consolidates land and sorts
to higher quality land will get a larger adjacency bonus then one who retains her lower quality land. This
implies that there is not a perfect separation between the gains from defragmentation and the gains from
sorting. The decomposition we have chosen holds the quality of land fixed at the initial allocation for the
purpose of calculating defragmentation and assigns the additional gains and losses to sorting. The results
in the analysis below are robust to alternative decompositions and to specifications that count the number
of fragmented lots rather than weighting them by their value.
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defragmentation, and this does not depend on the auction format. In contrast, farmers ex-
tracted only a small percentage of the available gains from sorting, and the CDA-Package
treatment performed significantly better in this regard.

To further understand defragmentation and sorting rates across the treatments, we re-
normalize our defragmentation and sorting measures so that they are bounded above by
one. For defragmentation, we calculate:

Defragmentation =
∑N

i=1 0.2
[
c f inal

i − cinitial
i

]
yinitial

i

∑N
i=1 0.2

[
1− cinitial

i
]

yinitial
i

, (2)

and for sorting, we calculate:

Sorting =
∑N

i=1

(
1 + 0.2c f inal

i

) [
y f inal

i − yinitial
i

]
∑N

i=1 (1 + 0.2)
[
yoptimal

i − yinitial
i

] . (3)

Note that the sorting measure is not defined in Maps 1 and 3 because all farmers start
with their efficient land types. We thus drop these observations.

Result 2 Defragmentation rates are over 80% in all three auction formats, with no statistically
significant difference between treatments. The treatments are less successful overall at improving
sorting. The CDA-Broker treatment realizes only 35% of potential gains from sorting. However,
the CDA-Package treatment improved sorting by 16 percentage points (48%) in our preferred
specification. CDA-Swap improved sorting by 4 percentage points (not significant).

Table 3 reports the impact of our treatments on defragmentation. The defragmentation
rate is surprisingly high in the CDA-broker treatment, suggesting that subjects are effective
at agglomerating land, even in mechanisms that do not allow for packages. Somewhat
surprisingly, the CDA-Swap mechanism has a similar defragmentation rate. The CDA-
Package auction achieves slightly more defragmentation than the other two treatments,
but the differences are not statistically significant.

Table 4 reports the treatment effects for sorting. As can be seen from the control group
means, the CDA-Broker mechanism improved sorting by only 35% of the optimum.29 Rel-

29There are a number of reasons why defragmentation may be easier for farmers to accomplish then
efficient reallocation. First, from the standpoint of mechanism design, defragmentation shares similarities
with the partnership dissolution problem of Cramton et al. (1987) in the sense that both parties in a swap act
as both a buyer and a seller and own a “share” of the efficient allocation. In such settings (and in contrast
to the bilateral trading setting of Myerson and Satterthwaite (1983)) it is often possible to induce efficient
trade without generating a budget deficit (Loertscher and Waser 2017). Second, empirically, farmers often
worked towards defragmenting land first and then tried to move to more efficient lots. This ordering of

19



ative to this, there is evidence (column 5) that CDA-Package improved sorting by 16 per-
centage points.

Taken together, our efficiency, fragmentation, and sorting results suggest that there
CDA-Package performs better than the other formats, driven by improved sorting. Rela-
tive to earlier studies, the difference in efficiency across our three mechanisms is small,
suggesting that communication and informal agreements are an imperfect substitute for
packages. Looking deeper at the transaction level data, it appears that farmers substitute
away from brokered trades and toward trades that utilize the centralized system when
they are given the ability to construct packages.

2.4 Efficiency and Initial Land Allocation

As discussed above, we conjectured that the ability to achieve full efficiency would de-
pend on the initial allocation of plots, and we tentatively ranked our 8 initial allocations
in order of perceived difficulty. Figure 10 shows efficiency, defragmentation, and sorting,
by initial allocation. In each case, F-statistics for a joint test of the hypothesis that all initial
allocations perform the same are displayed below the figure.

Result 3 Efficiency gains depend on the initial allocation of plots, but are not monotonically de-
creasing in our pre-experimental assessment of difficulty.

Overall, the results support the hypothesis that initial allocation is important for de-
termining the level of efficiency. In each case, the F-statistic implies that there are sig-
nificant differences across the maps. However, it is not the case that efficiency achieved
is monotonically decreasing, as we had anticipated. In retrospect, we ranked maps by a
conjecture on whether or not full efficiency would be reached. As shown above, however,
full efficiency was rarely reached, and so ease of reaching partial efficiency was more im-
portant. For example, on the basis of full efficiency, we believed that Map 8 was very
hard, and Map 5 less difficult. Inspection of Figure 10a, however, implies that this was
not the case. Figures 10b and 10c give some idea as to why this is the case, Map 8 was
easy to defragment, but Map 5 was not. With hindsight this seems predictable, Map 8
seems easy to defragment, but hard to fully sort.30 Because our auctions mostly reduced

transactions may have exacerbated the exposure problem in the CDA-Broker and CDA-Swap formats, since
farmers had to break up contiguous blocks as part of any move. Finally, two of our easiest maps (maps
1 and 3) began optimally sorted. This implies that only the harder set of maps are used to determine the
improvement in sorting.

30For map 5, defragmentation (and efficiency) requires a CDA-Swap chain with three people involved.
On the other hand, while full efficiency in Map 8 requires a CDA-Swap chain with at least 4 people, de-
fragmentation requires only a CDA-Swap chain with 2 players. Thus 8 is easy to defragment and hard to
improve sorting, but 5 is hard to defragment.
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defragmentation, Map 8 turned out to be easier than Map 5. We leave further exploration
of these issues for future work.

2.5 The Division of Surplus

Thus far we have seen that efficiency levels are high across all of our mechanisms, and that
package mechanisms generate modest improvements in efficiency. We also found little
evidence that credit constraints influence efficiency, which suggests that farmers found
alternative ways to mitigate exposure risk. In this section we study the division of surplus
between participants, and show further evidence that subjects use communication and
informal institutions to reach agreements that are both egalitarian and efficient.

At a fundamental level, the exposure problem is predicted to arise in our thin-market
setting because there is limited competitive pressure, and individuals are likely to bargain
over the surplus on a transaction-by-transaction basis. Such sequential trade naturally
leads to hold up, which reduces returns from making initial transactions. If the holdout
problem is severe, farmers may fear expropriation leading to trade frictions and inefficient
allocations. However, when holdout is less severe, some farmers may still be willing
to make initial trades, as long as the expected profit of completing a chain of trades is
positive. In these cases, exposure should generate variation in the division of surplus,
rather than reducing efficiency. This is a particularly important issue for us. A real world
land market would involve potentially vulnerable individuals, and a mechanism that
increases inequality, or some how favours more able traders, would not be acceptable.

Our environment is one where farmers are heterogeneous in their initial bargaining
positions, being assigned different land and different productivity types. Thus, even if
farmers are not taking advantage of their strategic position, we would naturally expect
to see variation in outcomes. To control for this natural variation, we turn to cooperative
game theory. Recall that in cooperative models of bargaining, coalitions bargain to the
Pareto frontier, and surplus division is based on the value that each individual brings to
the grand coalition relative to the value that an individual brings when interacting with
smaller coalitions. A remarkable result in cooperative game theory, shown in Shapley
(1953), is that there is a unique division of surplus that arises under the “egalitarian”
axioms of symmetry, efficiency, linearity, and invariance to dummy players. We use the
Shapley values as a benchmark; they are the outcomes we would expect if farmers receive
an equitable share of the surplus.

In our environment, Shapley values are constructed as follows: let v be a function from
the set of all coalitions (26) to the set of real numbers R, which returns the maximal value
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that can be obtained by optimally reallocating the land owned by farmers in the coalition.
The Shapley value of farmer i, is given by

φi(v) = ∑
S⊆F\{i}

|S|!(6− |S| − 1)!
6!

(v(S ∪ {i})− v(S)), (4)

where F \ {i} is the coalition of all farmers except for farmer i, and S is a subset of this
coalition. The Shapley value can be viewed as the average surplus that a farmer adds
over all possible permutations of the coalitions that can be formed, and is a natural gen-
eralization of marginal contribution in this setting. By construction ∑i φi(v) add up to the
value of the grand coalition, V∗.

We construct the Shapley value for every individual, and every auction, excluding the
cash that the players is given at the beginning of the game. The Shapley value assumes
that participants will reach efficiency, which is not the case in most auctions. To account
for this, we scale the Shapley values in a given auction by the total surplus gained. This is
equivalent to assuming that the share of surplus given to each farmer is the same as that
suggested by the Shapley value, even away from the Pareto frontier. We compare this to
the surplus that the farmer earned in the experiment, excluding the cash that the farmer
was given at the beginning of the game.

Result 4 The scaled Shapley value is a strong predictor of the shares received by farmers in all
three mechanisms. There is weak evidence that there is a reduction in the variance of the distribu-
tion of surplus in the CDA-Package treatment.

Evidence for this result is shown in Figure 11 and Table 5. As can be seen in Fig-
ure 11 there is a near one-to-one relationship between the scaled Shapley value and the
surplus a farmer receives in the auction. In Table 5, the odd numbered columns show
regressions with surplus as the left hand side variable, and the scaled Shapley value as
the explanatory variable. As above, our preferred specification (column 7) drops the first
block and includes block fixed effects, trends, and gender and lab controls. The results
are quite striking. First, the coefficient on the scaled Shapley value is almost exactly 1,
and the intercept is very precisely estimates to be zero (in column 1, which excludes the
fixed effects), suggesting that on average the scaled Shapley value does an excellent job of
predicting the distribution of surplus. Second, the R2 is extremely high: in the regression
without any fixed effects it is over 90%, suggesting that there is very little variability in
the distribution that is not explained by the scaled Shapley value.

In the even columns of Table 5, we regress the squared residuals from the regression
on the different mechanism treatments. Because CDA-Package should eliminate all expo-
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sure risk, we conjectured that there will be less residual variability in the CDA-Package
treatments. The results provide weak support for this conjecture. The average of the
squared residuals in CDA-Package are around 30% lower than in CDA-Broker, though the
effect is marginally significant, and only in one specification.

While the original intent of constructing the Shapley value was to assess the impact
of exposure and holdout on the division of surplus, the relationship between the Shapley
value and surplus is striking and one may wonder the extent to which the relationship
reflects a mechanical connection between initial values and final surpluses. To see the
issue, consider a world with only two farmers who each own a single piece of land and
who value their own piece of land at values v1 and v2. If, by swapping the land, they
would receive a joint surplus of S > v1 + v2, the Shapley value for farmer 1 would be
given by φ1 = v1 + (S− v1 − v2) and the Shapley value for farmer 2 would be given by
φ2 = v2 + (S− v1 − v2)/2. By construction, φi is positively correlated with the original
allocation, and this correlation becomes stronger as (S − v1 − v2)/2 grows small. This
may lead to a mechanical relationship, where non-trading farmers closely match their
Shapley Value in auctions where the returns to trade are small.

To eliminate the mechanical relationship, we calculate φ̂1 = φ1 − v1 and compare it
to the difference between a farmer’s final surplus and his initial allocation. Figure 12
shows this relationship for all farmers and all auctions.31 While the relationship is less
tight than the original Shapley Values, the R2 remains high, and the slope term of .88 is
remarkably close to the theoretical prediction of 1. Note also, there are very few cases
where the change in surplus is negative, implying it is rare for a farmer to lose money by
participating in an auction. Overall, only 4.4% of auction-farmer pairs end in a loss, and
all but 1.8% of farmers increased their surplus relative to their initial endowments across
all 8 auctions.

The experimental bargaining literature has focused primarily on two-person and three-
person bargaining games, and typically finds that pairs tend to split surplus more evenly
than is predicted by the Shapley value.32 In our experiment, we find no tendency towards
more equal surplus division. This may be due to the market environment in which partic-
ipants are trading, and the pricing mechanism, which uses bids placed by non-winning
participants as revealed preference constraints. Farmers in our environment may also
be accustomed to bargaining in asymmetric environments, and may view variation in
outside options as natural constraints in the division of surplus.

31There are 7 observations with net profit below -200 that are not shown in the graph.
32For surveys in bargaining see Roth (1995) and Camerer (2003). See also Anbarci and Feltovich (2013) for

an experiment related to variation in disagreement payoffs and de Clippel and Rozen (2013) for structural
estimation of bargaining models in three-player bargaining games.
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Overall, our results suggest that farmers bargain quite effectively as a group, and that
bargaining is influenced by position in ways that is consistent with the Shapley value. In
addition to increasing efficiency, there is weak evidence that our CDA-Package treatment
reduces strategic risk, suggesting that the introduction of packages may reduce hold-out
in realized trades, in addition to facilitating efficiency improvements.

3 Conclusion

Small farms and fragmented plots are hallmarks of the agricultural sector in less devel-
oped countries, and there is evidence of high potential returns to land consolidation and
reallocation. To help understand how market design might be used to improve the land
allocation, we implemented a framed field experiment in rural Kenya, where we study
the performance of a range of two-sided market designs. Our results suggest that farmers
understood the mechanisms and were able to benefit from the auctions. Our results fur-
ther suggest that a continuous-time package exchange tailored from the package market
of Goeree and Lindsay (2016) performed better than a simple continuous double auction,
both in terms of efficiency and in reducing variation in payoffs. The gains over other
mechanisms appear to come primarily from improving the allocation of farmers to plots.
We see these results as an encouraging first step in a project to bring centralized markets
to rural land trade in developing countries.
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Figures

Figure 1: Agricultural Plots in Oster Stillinge Village, Denmark Before and After Land
Consolidation. Image taken from Hartvigsen (2014).
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Panel (a):  Computer Interface Used by Farmers
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Slope: 1.006 (.005). R-squared: .914
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Tables

Table 1: Summary Statistics

CDA-Broker CDA-Swap CDA-Package Total

Female 0.604 0.633 0.520 0.586
(0.489) (0.482) (0.500) (0.493)

Age 42.91 43.29 41.48 42.56
(11.32) (9.324) (10.27) (10.38)

Education (years) 9.578 9.628 10.65 9.945
(3.426) (3.026) (3.190) (3.260)

Married 0.710 0.711 0.800 0.740
(0.454) (0.454) (0.400) (0.439)

Household size 4.034 3.965 4.219 4.072
(1.759) (1.696) (1.639) (1.703)

Employed 0.437 0.442 0.490 0.456
(0.496) (0.497) (0.500) (0.498)

Owned land (acres) 1.062 0.754 0.788 0.872
(1.908) (0.866) (1.337) (1.452)

# plots owned 1.241 1.267 1.274 1.260
(0.519) (0.618) (0.580) (0.573)

Bought/sold land last 12mo 0.0735 0.0222 0.0784 0.0583
(0.261) (0.148) (0.269) (0.234)

Risk aversion (1-10) 3.188 3.523 3.248 3.316
(3.000) (3.370) (3.132) (3.168)

Standard deviations in parentheses.
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Table 2: Efficiency

(1) (2) (3) (4) (5) (6)
Efficiency Efficiency Efficiency Efficiency Efficiency Efficiency

CDA Swap Auction -0.006 -0.024 0.034 0.019 0.043 0.027
(0.037) (0.050) (0.035) (0.051) (0.034) (0.050)

CDA Package Auction 0.052 0.068 0.063 0.059 0.080 0.076
(0.033) (0.045) (0.033) (0.047) (0.029) (0.043)

Low Cash Treatment 0.002 0.001 0.002 -0.011 0.002 -0.010
(0.022) (0.046) (0.024) (0.053) (0.024) (0.053)

CDA Swap × low cash 0.035 0.031 0.031
(0.056) (0.062) (0.062)

CDA Package × low cash -0.032 0.008 0.008
(0.058) (0.063) (0.063)

Block fixed effects X X X X X X

Within-session trends X X X X X X

Gender & Lab controls X X X X X X

Drop Block 1 X X X X

Linear time trend X X

N 366 366 318 318 318 318
R-squared 0.184 0.186 0.105 0.106 0.111 0.112
Control group mean 0.678 0.678 0.702 0.702 0.702 0.702

Standard errors clustered at session level in parentheses. “Efficiency” measures the fraction of the
potential welfare increase realized in a given auction. Block fixed effects control for stratification
block (8 in total). Gender and lab controls are a variable measuring the fraction of female participants
and a lab dummy. Time trend controls linearly for session ID (takes values 1-48).
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Table 3: Defragmentation

(1) (2) (3) (4) (5) (6)
Defrag. Defrag. Defrag. Defrag. Defrag. Defrag.

CDA Swap Auction 0.000 -0.036 0.010 -0.036 0.014 -0.032
(0.025) (0.035) (0.024) (0.038) (0.025) (0.039)

CDA Package Auction 0.015 0.021 0.028 0.014 0.035 0.021
(0.024) (0.032) (0.026) (0.035) (0.024) (0.035)

Low Cash Treatment -0.013 -0.033 0.001 -0.038 0.001 -0.038
(0.021) (0.041) (0.022) (0.047) (0.022) (0.047)

CDA Swap × low cash 0.073 0.091 0.091
(0.049) (0.055) (0.055)

CDA Package × low cash -0.012 0.028 0.028
(0.054) (0.055) (0.055)

Block fixed effects X X X X X X

Within-session trends X X X X X X

Gender & Lab controls X X X X X X

Drop Block 1 X X X X

Linear time trend X X

N 366 366 318 318 318 318
R-squared 0.137 0.144 0.060 0.068 0.062 0.070
Control group mean 0.840 0.840 0.862 0.862 0.862 0.862

Standard errors clustered at session level in parentheses. “Defrag.” measures the frac-
tion of the potential gains from defragmentation achieved. Block fixed effects control
for stratification block (8 in total). Gender and lab controls are a variable measuring
the fraction of female participants and a lab dummy. Time trend controls linearly for
session ID (takes values 1-48).

37



Table 4: Improvement in sorting

(1) (2) (3) (4) (5) (6)
Sorting Sorting Sorting Sorting Sorting Sorting

CDA Swap Auction -0.069 -0.051 0.012 0.006 0.039 0.034
(0.072) (0.083) (0.068) (0.087) (0.063) (0.083)

CDA Package Auction 0.070 0.066 0.103 0.045 0.156 0.099
(0.073) (0.098) (0.072) (0.104) (0.061) (0.089)

Low Cash Treatment -0.008 0.001 -0.005 -0.048 -0.005 -0.046
(0.051) (0.089) (0.055) (0.097) (0.055) (0.097)

CDA Swap × low cash -0.035 0.014 0.012
(0.116) (0.128) (0.128)

CDA Package × low cash 0.007 0.117 0.115
(0.136) (0.143) (0.143)

Block fixed effects X X X X X X

Within-session trends X X X X X X

Gender & Lab controls X X X X X X

Drop Block 1 X X X X

Linear time trend X X

N 274 274 238 238 238 238
R-squared 0.216 0.216 0.122 0.125 0.142 0.145
Control group mean 0.308 0.308 0.353 0.353 0.353 0.353

Standard errors clustered at session level in parentheses. “∆ Misalloc.” measures
the fraction of potential gains from sorting realized. Block fixed effects control for
stratification block (8 in total). Gender and lab controls are a variable measuring the
fraction of female participants and a lab dummy. Time trend controls linearly for
session ID (takes values 1-48). Note: measure is not defined for maps 1 and 3.
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